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This paper deals with the motion of a heavy particle in a turbulent flow in an 
open channel with asmooth bottom. For the case when the particle stays in suspen- 
sion in the main body of the flow almost all the time, (a )  the probability density 
function of the projection on a cross-sectional plane of the particle position 
a t  any instant, and ( b )  the mean velocity and longitudinal dispersion coefficient 
of particles are determined analytically by employing the Eulerian formulation 
and applying the Aris moment transformations. It is found that the mean par- 
ticle velocity decreases and the longitudinal dispersion coefficient of particles 
increases with the fall velocity. 

1 Introduction 
When a single heavy particle whose size is relatively small compared with 

the depth is released into a turbulent open-channel flow, it moves under the 
combined action of the mean shearing motion of the fluid, turbulence andgravity. 
Depending on both the flow conditions close to the bottom of the channel and 
the particle characteristics, the particle either will continue on its way mostly 
in the main body of the flow, or will drop out of the flow owing to gravity. I n  
the case where the conditions allow the particle to travel in suspension, the quan- 
tities needed to describe the motion in the Lagrangian sense appear to be statis- 
tical moments of the particle displacement, since the particle motion in this 
particular case looks like that of a fluid particle due to turbulent diffusion. I n  
practice, this so-called sediment suspension is what occurs in fluvial streams 
where silt and sediment particles the size of fine sand are transported mostly in 
the main body of the flow. Prediction of the first two statistical moments of the 
particle displacement in the flow direction, the mean and variance, would mean 
that one could calculate the mean velocity and the longitudinal dispersion 
coefficient of sediment particles. 

Batchelor, Binnie & Phillips (1955) studied the mean velocity and the longi- 
tudinal dispersion of particles in a circular pipe and showed that the time- 
averaged axial component of velocity of a fluid particle is equal to the discharge 
velocity. Binnie & Phillips (1958) extended this work to cover slightly heavy 
and buoyant particles. Barnard & Binnie (1963) extended this study one step 
further to include heavy particles. 

Elder (1959) applied the analysis developed by Taylor (1954) to describe the 
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longitudinal dispersion of discrete particles, both of zero and of finite buoyancy. 
The relevance of Elder’s prediction to the present study will be discussed in 
more detail in this paragraph. Using the expression [see equation (A6)] for the 
probability density of the particle position in the vertical and assuming a para- 
bolic velocity distribution in the channel, Elder calculated the mean velocity 
of heavy particles and then predicted the dispersion coefficient. In  predicting the 
dispersion coefficient he used an expression (Elder 1959, formula 9) derived from 
the equation of conservation of mass which, in that case, did not contain a term 
characterizing the settling of particles due to gravity. Because an artificial 
velocity distribution was used in the calculation, and the main equation in the 
derivation of the expression for the dispersion coefficient should have had a fall- 
velocity term, Elder’s estimate differs from Sayre’s ( 1968) numerical calculation 
and the author’s prediction presented in this paper. 

Batchelor (1965), in his review on the motion of small particles in turbulent 
flow, discussed the systematic effects of inertia difference or more important, the 
action of gravity on the motion of a heavy particle. In  particular, he examined the 
equation representing the balance between transport due to gravity and turbu- 
lent transport near the bottom of an open-channel flow. From this there can be 
obtained a criterion for whether the particles stay in suspension or not (see 3 2.2). 

The exchange of particles between the bed and the flow in a fluvial stream 
has not been explained physically and no quantitative criterion has been estab- 
lished so far. However, to be able to analyse the dispersion process analytically 
it is necessary in this case to work with a hypothetical model which permits the 
exchange of particles in a certain manner. Sayre (1968, 1969) formulated the 
dispersion process of sediment particles in an open-channel flow in the Eulerian 
sense, permitting the exchange of particles by introducing a so-called bed 
absorbency coefficient and an entrainment-rate coefficient. Using the Aris 
moment transformations, he obtained zeroth, first, second and third moments of 
the concentration numerically with the aid of a digital computer. In an earlier 
study the author examined the specific case in which the ratio of the fall velocity 
of particles to the shear velocity is small compared with unity, which probably 
implies that the particles are all transported in suspension and the mean particle 
velocity is approximately equal to that of the flow (Sumer 1971). Applying the 
method used by Taylor (1954) he obtained an expression for the longitudinal 
dispersion Coefficient. 

Particle motion in a turbulent channel flow, particularly close to the bottom, 
presents quite a complex problem, especially when particle exchange between the 
bottom and the flow is involved. To eliminate the difficulties which arise owing 
to the nature of the assumption about the bottom, we shall suppose the bottom 
of the channel to be smo0th.t The specific goal of this study is to determine the 
mean velocity and the longitudinal dispersion coefficient of heavy particles ; these 
are the most important quantities needed to describe the particle motion, when 
conditions are such that the particle travels in suspension almost all the time. 

t This assumption is clearly not connected with the process of dispersion of particles in 
an open-channel flow when the particles are all transported in suspension (see Batchelor 
1965). 
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2. General considerations 
2.1. Statement of the problem 

The flow is a two-dimensional fully developed shear flow in an open channel 
with a smooth bottom. The flow depth is h and the x and y axes are chosen so 
that x is in the flow direction and y in the upward direction (figure I). The process 
is considered to be independent of the lateral position. The particle is such that 
its size d is small compared with the flow depth h. The terminal velocity of the 
particle in quiescent fluid is denoted by w. The main problem in this study is to 
describe the motion of a particle when it is released from a point in the channel 
and travels under the combined action of the mean shearing motion, turbulence 
and gravity. 

As has been reported by many researchers, observations made in a laboratory 
channel show that for certain flow speeds a small heavy particle sits motionless 
on the bottom. For some higher speeds it appears to move steadily along the 
bottom, while for yet higher speeds i t  may be lifted into the body of the flow. 

Batchelor ( 1965) examined the constant-stress layer when considering particle 
transport in channel flows. His argument will be given briefly here, because of its 
direct applicability. In the constant-stress layer, on dimensional grounds, the 
turbulent transport coefficient in the y direction is EOC yu,. Using the Reynolds 
analogy one gets E = KU*Y, where u* is the shear velocity and K is the Kkm&n 
constant. When the equilibrium state of particle transport in the y direction is 
reached, the downward flux due to gravity is balanced by the upward flux due to 
turbulent transport, that is 

6 dp]dy + wp = 0, 

where p is the probability density of the particle position. Inserting the expression 
for E into the above equation, and then integrating, gives 

2.2. Particle motion dose to the bottom 

p = p 1  y-wlm,, (1)  

where pl is a constant. When W/KU* < 1, 
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and, when W/KU* > I, 

Since 

is proportional to the total number of particles between 0 and y, equation (2) 
shows that most of the particles in suspension reside above the constant-stress 
layer; this leads to the important conclusion that a particle stays in suspension 
almost all the time when w / m *  < 1. On the other hand, (3) shows that most of 
the particles in suspension reside in the constant-stress layer and that the total 
number of particles depends strongly on the conditions a t  the lower boundary 
of the flow, which, in our case, is the viscous sublayer, when w/Ku* > 1. 

Taking into consideration the argument given by Batchelor and the observa- 
tions mentioned in the first paragraph of this section, it can be suggested that it 
is useful to consider two cases separately: (a )  when the particle stays in suspen- 
sion almost all the time and (b)  when it does not. 

Recent experiments by Corino & Brodkey (1969)) Grass (197 1) and others have 
shown that the wall region in turbulent flow consists of two zones each of which 
has its own structural character: (a )  a viscous sublayer (or what Corino & Brod- 
key called the ‘sublayer region’) and (b )  a generation region. 

(a)  Viscous subzaayer. The flow in this region has a streaky character; very large 
lateral variation in the streamwise component of the velocity is correlated with 
the lateral velocity. This thin sublayer region is not of constant set thickness but 
rather is influenced by all events in the generation region. Corino & Brodkeyt 
reported the viscous sublayer to be the region 0 6 y+ < 5, of which the lower- 
most part y+ < 2-5 is essentially passive and the rest active. Here y+ = p a / v  
and y is the distance from the wall. 

( b )  Generation region. Major generation and dissipation of turbulence occurs 
in this region. This region is the position of the majority of the so-called fluid 
ejection and fluid inrush phases. According to Corino & Brodkey the generation 
region is the zone 5 ,< y+ < 70. In  the ejection phase low-velocity fluid is ejected 
away from the wall in the form of a three-dimensional disturbance occurring 
locally, and randomly with respect to time and longitudinal position. Ejected 
fluid originates from the lower zone of the generation region and has an instan- 
taneous velocity component perpendicular to the wall which is as high as 30 % 
of the longitudinal component. In  the inrush phase high-velocity fluid pene- 
trates towards the wall, again in the form of a three-dimensional disturbance. 

Turning now to the case where the particle stays in suspension almost all 
the time, the necessary condition should be, from (2), W/KU* < A in a general 
form, where A is a constant of order unity. Such a particle wandering close to the 
bottom during its travel over the cross-section may migrate downwards into the 
viscous sublayer owing to an inrush phase. Once a heavy particle is embedded in 
the viscous sublayer, particularly in the passive zone, it is hardly expected to be 
lifted into the body of the flow, since the experimental evidence reported by 

t Corino & Brodkey made their observations in the region very near a pipe wall. 
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Corino & Brodkey showed that “there was often a connected movement of (fluid) 
particles (in the passive zone of the viscous sublayer) which occurred simul- 
taneously with the ejection, but rarely did they possess sufficient. . . velocity 
to escape from the region”. In  that case, in order to maintain the particle in 
suspension and prevent it from leaving the main body of the flow by entering the 
viscous sublayer, another condition is that the particle size be greater than the 
thickness of the viscous sublayer, d > 6. Then it can be said that a particle stays 
in suspension almost all the time if 

(4) 

I n  t,he case where the particle does not stay in suspension all the time, the 
parameter W/KU* is greater than A .  I n  this case, as previously mentioned, most 
of the particles reside in the constant-stress layer, which overlaps considerably 
with the generation region. The lower boundary of the How is the viscous sublayer; 
that  is, the conditions here are the ones on which the total number of particles in 
suspension depends. I n  spite of the fact that  the structure of turbulence in this 
region has been illuminated recently in some detail (Corino & Brodkey 1969; 
Grass 1971) ,  the particle motion will remain an object of speculation until 
observations of the motion of heavy particles near the bottom under controlled 
conditions are made. 

} 
W/KU* < A ,  
d > 6. 

A = constant of order unity, 

2.3.  Longitudinal dispersion when particles stay in suspension 
almost all the time 

Because of the presence of the free surface and the bottom, and the conditions 
W/KU+ < A and d > IS, which imply that a particle cannot wander in the vertical 
direction and stays in suspension almost all the time, the velocity of the particle 
in the flow direction is necessarily a stationary random function of time as 
soon as the influence of the special choice of the point on the cross-section where 
the particle was released has been lost. It follows that the argument given by 
Batchelor & Townsend (1956, p. 360) should be applicable. Let u(t) denote the 
fluctuation about the ensemble mean U of the component of the particle velocity 
in the flow direction. Following the same argument, it can be shown that U. is 
equal to  what might be called the particle discharge velocity, the measured rate 
of discharge of particles a t  some cross-section averaged over a long time divided 
by the product of the cross-sectional area and the cross-sectional average 
concentration of particles. The mean position of the particle is a distance 

F(t) = Z ( t  - to )  ( 5 )  

downstream from the point of release and the variance of the displacement about 
the mean is 

p(t) 2 ( t - t o ) ~ ~ m B ( t ’ ) d t ’ - ~ ~ ~ ~ m t ‘ B ( t ’ ) d t ’  0 as t - t o + t ,  (6) 

where #(t’) is the autocorrelation coefficient of the velocity u: 

q t ’ )  = u(t) u( t  + t ’ ) /2 .  (7)  
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The probability density function of the particle position in the x direction tends 
to a Gaussian form with a longitudinal diffusivity D, (longitudinal dispersion 
coefficient) as t - to -+ CO, where 

When the Reynolds number is large, one expects that  the inean particle velocity 
U and the dispersion coeficient D, depend only on (a)  the shear velocity u* and 
the flow depth h because the velocity distribution across the channel is deter- 
mined by these quantities (the viscous sublayer is not involved since d > S), 
and (b )  the fall velocity w of the particle, if w is considered to represent both the 
inertial and gravity effects. On dimensional grounds, U and D, therefore should be 
given by 

where K ,  the K k m h  constant, is employed here for convenience. 

3. Prediction of mean velocity and longitudinal dispersion coefficient 
of heavy particles 

3, I. Formulation 

This section deals with the Eulerian formulation of the problem with the purpose 
of predicting the mean velocity and dispersion coefficient of the particles. For 
this, the initial particle distribution is considered to  be in the form of a uni- 
formly distributed plane source. From the considerations of 5 2.3, particles 
as a whole ultimately move with a certain mean velocity and spread out 
longitudinally. Conservation of mass gives the following equation: 

-+U(y)--w-=-- E(y)- f- €(y)- . ac 
at ax ay ax ac ac a ( ::) :y( Z;) 

The boundary conditions, which imply that there is no net transport across the 
boundaries, are 

and the initial condition for a uniformly distributed instantaneous plane source 
is 

Here c denotes the concentration of particles, m is the number of particles 
released per unit width and 6(x)  is the Dirac delta function. As far as the 
application of (10) in the case where heavy particles are present is concerned, 
the experimental evidence shows that reasonable agreement between theory 
and experiment can be achieved in most cases by assuming that the downward 
flux of particles is equal to cw (provided that the particle fall velocities are in 
the Stokes range) and the turbulent transport coefficient of heavy particles is 
equal to that of fluid particles. Since this is outside the scope of the present 
study, further discussion is avoided. 

E(Y) aclay + wc = 0 a t  y = 0, h (11) 

c(x, y, 0) = (m/h) S(x) for y E [ O ,  h] a t  t = 0. (12) 
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To facilitate comparisons, the notation and non-dimensional parameters 
introduced by Aris (1956) and also used by Sayre (1968) will be employed here. 
The velocity U in the channel and the turbulent transport coefficient care written 
in the following forms : 

W Y )  = im +X(Y)L E(Y) = D W ) ,  (13), (14) 

where 0 and D are the cross-sectional averages of U and E ,  respectively. Since 
particles ultimately move with a certain mean velocity Us (it has been already 
mentioned in 5 2.3 that Us = 5) it appears to be useful to write (10) with respect 
to axes moving with velocity V,. Introducing the non-dimensional parameters 

(15) 
5 = (2- U,t)/h, 7 = y/h, T = Dt/h2, C = c/(m/h2), 

p = Qh/D, ps = U,h/D, V ,  = wh/D, 

the non-dimensional forms of (lo)-( 12) become 

$aC/aq+vsC = o at 7 = 0, 1, (17) 

C(fC,q,O) = a([) for ~ E [ O ,  11 a t  7 = 0. (18) 

Assuming that the velocity distribution is logarithmic and employing the Rey- 
nolds analogy, px and $ are given by 

6~-~(1+10gq),  $ =  67(1-7) (191, (20) 

and D in (14) becomes QKhu*. Then the fall-velocity parameter v, becomes 

vs = ~ w / K u *  = 6p, 

where p = wlKu* and will be used throughout the study as the characteristic 
parameter representing the effect of gravity. If thepth moment of the concentra- 
tion is defined as 

cp = Srn peat 
- m  

equations (16)-(18) become (Aris 1956) 

$aC,/aq + vSCp = o at 7 = 0,  1, (22) 

at 7 = 0. 1 for p = 0 
0 for p > 0 

If m, is defined as the cross-sectional average of C,, 

2 F L Y  65 
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then further transformation of (21) and (23) gives 

The transformations applied here are exactly the same as those first introduced 
by h i s  (1956) and also employed by Sayre (1968). 

3.2.  Zeroth moment of concentration 

From (24), for p = 0, dm,/dr = 0 and, using mo(0) = 1 [equation (25)], m, is 
found t o  be equal to  unity at any time r. Equations (21)-(23) forp = 0, together 
with m, = 1, are employed to find the solution for Co(7, r ) ,  that is, 

m, =I:C,(q,T)dy = 1.  

C,(q, r )  is found to be as follows (see appendix A): 

where the constants aK are given by equation ( A l 2 ) .  In the case of neutrally 
buoyant particles, p = 0, since ( a )  the initial condition (28) is C, (7,O) = 1 and 
( b )  Co(7, T )  should tend to unity as r --f 00 because there is no gravitational effect 
in this case, then C,(r, r )  = 1 for all values of time. 

Writing the hypergeometric series in (30) in terms of Jacobi polynomials 
[equation (A 1 l)] and making use of tables of coefficients for the Jacobi poly- 
nomials (Abramowitz & Stegun 1968, p. 793), C&7, 7) was evaluated for p = 0.1 
and 0.3 (figure 2). It was found that Co reaches the state of equilibrium a t  approxi- 
mately r = 0.5, after which it becomes a time-independent function and can be 
expressed as 

Sayre (1968, p. 31) arrived a t  the same result by his numerical solution. 

3.3. Mean particle velocity 
Equations (24) and (25) with p = 1 are employed to predict the mean particle 
velocity: 

ml(0) = 0 at r = 0, (33) 
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FIGURE 2. CO(r,7) for (a) /3 = W/KU* = 0.1 and ( b )  /3 = W/KU* = 0.3. 

of which the latter implies that the origin of 6 is chosen in the original plane of the 
centre of gravity. dm,/dr is the rate of the mean particle displacement relative 
to the r?; axis moving with the ultimate mean particle velocity Us (or in non-dimen- 
sional form ,us). Thus 

dm,/dr+O as r - f m  
2-2 
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FI~URE 3. Mean velocity of heavy particles relative to the mean flow velocity 
vs. the fall-velocity parameter /3 = W/KU*.  

and from (32), using (30), one gets 

which gives the mean particle velocity relative to the mean flow velocity. This ex- 
pression is the same as that used by Binnie & Phillips (1958) and Barnard & 
Binnie (1963) to predict the mean particle velocity in a pipe flow. 

Integration is carried out in terms of beta and psi functions. By writing the beta 
function in terms of gamma functions and after some algebra, ,us -p  is obtained 

(35) 
in the form 

where YP is the psi function. Using the tables of Abramowitz & Stegun (1968, 
p. 267) pY-p has been plotted against pin figure 3. In  the calculation K was taken 
as 0.42. For comparison, Sayre's numerical solution (1968, figures 3-15) has 
been plotted too. 

,U~--,U = 6 ~ - ~ [ 1  +Y( 1 -p )  -Y(2)], /? < 1, 

Inserting (30) into (32) and using (34) and (A 8), equation (32) becomes 
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From the above equation, using the initial condition (33), one has 

21 

x exp { - 6(K2 + K )  r}. (36) 

Thus the mean particle position ultimately moves to  

m 

mi(oo) = 2 6(K2 a= + K )  j' p x  (?)IF( - K ,  1 + K ;  1 -p; 7) dq. 

3.4. First moment of concentration 

The equations for the first moment of the concentration, (2  1)-( 23) for p = 1, are 

r] ( l -~)aC,/a~+pC,= 0 a t  9 = O , l ,  138) 

Cl(q ,  0) = 0 a t  r = 0. (39) 

Equation (36) will also be employed. Cl(7, r) is obtained in the following form 
(see appendix B) ; 

00 

Cl = 4(7) + x aKfK(7) exp { - 6(K2 + K )  .> 
K = l  

where 

in which A, is a constant. It should be noticed that Cl -+ q5 as r + 00. As far as 
the solution for q5 is concerned, the only condition on p is p < 1. Therefore, for 
neutrally buoyant particles, one has 

3.5. Longitudinal dispersion coeficient of particles 

The longitudinal dispersion coefficient defined in (8) can be written in non- 
dimensional form as 

From ( 24) 

Dl/hu, = &lim &€m2/dr. 
r+m 

(43) 
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/3 = W/KU* D,lhu* 

0.1 6.80 
0.2 8.41 
0.3 10-53 
0.4 13.39 
0.5 17.42 
0.6 2342 

TABLE 1 

Substituting the ultimate distributions of C0 and C, as r + 00 [(31) and (41), 
respectively] into the above equation, one gets 

The first term on the right-hand side is the contribution of the longitudinal turbu- 
lent diffusion and, as expected, is negligible in comparison with the second. The 
second, which is the main portion of the expression, arises because of the com- 
bined action of the velocity gradient and the vertical diffusion of particles under 
gravity. For neutrally boyant particles, p = 0, equation (45) reduces t o  t,hat 
obtained by Elder (1959). 

The expression (45) was computed numerically with the aid of a digital com- 
puter for P = 0.1,0.2,  . . ., 0.6. I n  the numerical integration the usual trapezoidal 
rule was used because of its convenience for this particular case. The interval 
[O, I] was divided into small intervals. Two different interval lengths, one in the 
neighbourhoods of 7 = 0 and 7 = 1, and the other between those two, were used. 
The integration was performed a t  each step by choosing the interval sizes 
smaller than those of the previous ones. This procedure was repeated until the 
difference between two subsequent outputs was judged to be small enough. I n  
the calculations K was taken to be 0.42. The results are given in table 1. For 
comparison, the longitudinal dispersion coefficient has been plotted in the form 
Dl(P)/Dl(0) together with Sayre’s numerical solution in figure 4, where D,(O) 
is taken as 5.52,  which is the converted form of Elder’s (1959) prediction for 
K = 0.42 (5.93 for K = 0.41). The results show that the dispersion coefficient 
increases with the fall velocity of particles. This behaviour can be interpreted 
as follows. Equation (31) implies that a heavier particle spends most of the time 
very close to the bottom, where the velocity gradient is greater than in any other 
region. A lighter particle, however, has less chance of travelling near the bottom, 
but more chance far from the bottom, where the velocity gradient is small. On the 
other hand, the greater the velocity gradient, the larger the longitudinal dis- 
persion. A heavier particle, therefore, should have a larger dispersion coefficient. 
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Sayre‘s ( I  968) numerical 
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FIGURE 4. Ratio of longitudinal dispersion coefficient of heavy particles to that of neutrally 
buoyant particles v8. the fall-velocity parameter p = W/KU*.  

3.6. Discussion 
As has been seen, Sayre’s (1968) numerical solutions for the mean velocity and 
the dispersion coefficient of particles differ significantly from the analytical 
results given in the present study, particularly for the large values of ,8; the 
discrepancy in ps-p is 12 % for p = 0.1 and 37 yo for ,8 = 0.3, and the discrep- 
ancy in Dl(/3)/Dl(0) is 7 % for ,8 = 0.1 and 32 % for ,8 = 0-3. The author believes 
that the discrepancies are due to the large depth increment A7 = 0.05 which Sayre 
(1968) used in his numerical solution. This, obviously, moderates the effect of 
px 3--00 and C, 3 +a at 7 = 0. By reducing AT to 0.01, using Simpson’s 
rule of numerical integration and assuming that the values of px and C,, are the 
same at 7 = 0 as at 7 = 0.001, Sayre (1973, private communication) pointed 
out that he obtained a value of ,us - p  = - 21.2 for /3 = 0.3, which is very close to 
the value of - 21.9 in the present study. Also pointing out that approximately 
50 % of the contribution tops -p  comes from the bottom 2 % of the flow field, i.e. 
0 < 7 < 0.02 (which shows a tremendous sensitivity of the result to values of the 
velocity and concentration very close to the bottom), Sayre confirmed the fact 
that the discrepancies are due to the large depth increment. This sensitivity is 
even more pronounced for Dl(,8)/Dl( 0 ) ,  which involves second-order terms. As 
can be seen from figures 3 and 4, the discrepancies decrease as p decreases; the 
discrepancy is the least for ,8 = 0. This is because the large depth increment in the 
numerical solution becomes less pronounced in moderating the effect of C, near 
7 = 0 when C, goes to a weak infinity at q = 0 for a smaller value ofp. This, too, 
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implicitly indicates the moderating effect of the large depth increment used in 
the numerical model and the sensitivity of the outcome to velocities and con- 
centrations near the bottom. 

4. Conclusions 
Making use of Batchelor’s (1965) argument for particle transport in the con- 

stant-stress layer, two types of particle motion may be considered separately; 
one is when the particle stays in suspension almost all the time and the other 
when it does not. In  the first case, in addition to the necessary condition 
w / m *  < A ,  i t  appears that to prevent the particle from leaving the flow the 
particle size should be greater than the thickness of the viscous sublayer. At 
present very little is known about the case where the particle does not stay in 
suspension all the time and observations of the motion of heavy particles close 
to the bottom under controlled conditions are needed. 

This paper essentially deals with the case where the particle stays in suspension 
almost all the time. The problem, in this case, is formulated in the Eulerian 
sense and then the Aris moment transformations are applied. The zeroth and 
first moments of the concentration, the mean velocity and longitudinal dispersion 
coefficient of particles are determined analytically. 

(a )  The zeroth moment C, of the concentration is the probability density 
function of the projection on a cross-sectional plane of the particle position. 
It is found that for the initial condition of a uniformly distributed instantaneous 
plane source, C,,(q, r )  tends to the expression obtained by employing the balance 
between the downward flux due to gravity and the upward flux due to turbulent 
transport, when r 2 0.5. 

(b )  It is also found that the mean particle velocity decreases and the longi- 
tudinal dispersion coefficient of particles increases with the fall velocity. In  fact, 
a heavier particle spends most of the time very close to the bottom, where the 
velocity is lower and the velocity gradient is greater than any other region. 
This implies that a heavier particle should have a smaller mean velocity and a 
larger dispersion coefficient. 

This study was carried out a t  the Department of Applied Mathematics and 
Theoretical Physics, University of Cambridge, while the author was a visitor 
with the support of a NATO Postdoctoral Fellowship of the Scientific and Tech- 
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Appendix A. The solution for Co(q,r) 

With the transformation T = 6r, equation (26) may be written as 

- ac,, - p -  ac, = - a (q(l -7) 3). 
aT a7 a7 a7 
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On separating the variables according to Co(q, T) = P(7)  G(T), the above equa- 
tion becomes 

dG 1 dP d 

The factor a is added for convenience. The time-dependent part is found to be 

G = G,exp{ - (a2-*) TI, Go = constant. (A2) 

q( 1 - q) P" + (1 + p- 27) P' + (a2- *) P = 0. (A 3) 

The function P satisfies the hypergeometric differential equation 

The coefficients a, b and c if the hypergeometric differential equation is written 
in the form z( 1 - x )  U" + [c - (a  + b + 1) z ]  u' - abu = 0 are, in our case, as follows: 

a = ++a, b = +-a,  c = l+p.  
From Erdklyi et al. (1953, pp. 71 and 105) the solution satisfying the conditions 
that either a = ++a or b = &-a is a negative integer - m  and the other is a 
positive integer 1 + I ,  where m and 1 denote non-negative integers, and neither 
c =  l+pnorc-a-b =pisanintegeris 

provided that p + 0. Here A and B are constants and P is a Gaussian hyper- 
geometric series which, in the present case, reduces to a polynomial in 7 of 
degree since either &+a or &-a is a negative integer (n = 0, - 1, - 2, ...). 
Application of the boundary condition (27) a t  q = 0 gives A = 0. Then, from 
(A2) and (A4), one gets 

1-7  1 
C, = GOB [ (T)] F(&-a,  &+a; 1 -p; q) exp{ - (a"&) T). 

C,, actually, is equal to the probability density function of the projection on a 
cross-sectional plane of the particle position at any instant T since, as is 
known, there exists a relation between concentration and the probability density 
function of the particle position; c(x,  y, t )  = mp(s, y, t ) .  C,, therefore, must be 
expected to reach a state of equilibrium after which it no longer depends on time. 
The expression (A5) becomes a time-independent function when a = &: 

1-7  ' 
C, = Go B (T) P ( 0 , l ;  1 - p; 7) = GOB 

In  the case of equilibrium, by determining the constant Go B by application of 
(29), C, is found to be 

c, = - 

which is the same expression as that obtained by Elder (1959), and f i s t  intro- 
duced in a slightly different form by Rouse (1 937). For the non-equilibrium case 
it is assumed that 
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where aK is a constant. I n  order that C, --f C,(q) as T -+ co, the constant a should 
exceed 4. To obtain the sequence of constants ccK ( K  = 1, 2, ...), equation (29) 
is employed. This gives 

and evaluating the integral one has 

r ( i -p) r ( i+p) / r (~+~)r (~-a)  = 0,  

where the integration brings in the condition p < 1. Keeping in mind that a: > 4, 
the positive zeros of the above equation are the same as the poles of the gamma 
function I?(+- a) ,  so that the sequence of constants a is 

g K = K + + ,  K = 1 , 2 , 3  ,... 
Then (A 7 )  becomes 

(A 10) 

sinnp 1-7 P’ 
C, = -(T) + X aK F(-K, l+K;1- ,0;q)exp{- (K2+K)T) .  

T3 K = l  

C, can also be written in terms of Jacobi polynomials (Abramowitz & Stegun 
1968, p. 561): 

where the (1 - /3)K are Pochammer’s symbols. 

gives 
The constants aK are determined by employing the initial condition (28), which 

The Jacobi polynomials GE(p ,q , v )  are orthogonal on the interval 0 < 7 < 1 
with respect to  the weighting function ( 1  - q ) p - P 7 q - 1 ,  which, in this case, equals 
[ ( l -v ) /v ]p  (Abramowitz & Stegun 1968, p. 7 7 3 ) .  Thus, by writing the above 
equation in terms of G,, 

and multiplying the latter by G,( 1,l  +p, 1 - 7)) setting K = M and taking into 
account that  p < 1, the constant a R  is obtained as 

where 3F2 is a generalized hypergeometric series (Gradshteyn & Ryzhik 1965, 
p. 1045). The boundary condition (27) at 7 = 1 is automatically satisfied. 
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Appendix B. The solution for Cl(y, 7) 
The solution of (37) consists of two parts: one is the particular solution and 

the other the complementary function. One can write the particular integral 
Cf’ as m 

where $(q) arises from the part of C, which is a function only of y. Substituting 
this expression into (37), i t  is found that q5 and f should satisfy the following 
equations: 

The latter implies that f is to be determined for each K.  
The complementary function is the solution of the homogeneous equation, 

which is identical to that for C,,. In  the same way as in appendix A the comple- 
mentary function Cf can be written as 

x B (+ - A,, 4 + A,; 1 -p ;  y) exp{ - 6 (A%-$)  r}, (B 4) 

Inserting the complete solution Cy) + CF into the boundary condition (38) 

I 
where eK and dE are constants. 

a t  y = 0 one gets 
eK = 0, 

and, again inserting the complete solution into (36) in the form 

the following equations are obtained: 

1; (?)”F(+- A,, g+ A,; 1 -/?;q)dy = 0. 
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From (B 9) h is found to be identical to a:  A, = a,. Then the complete solution 
is written as 

W 

Cl = $ ( r l )  + c a,f,(7) exp {- 6(K2 + K )  71 
K = l  

1-7 fl  + 2 d, ( T)  F( - K ,  1 +K,  1 -p;  7) exp{ - 6(K2+K)  71. (B 10) 
K = l  

The function q5 now can be determined by (BZ), (B5) and (B 7) .  Integration of 
(B 2) and then application of the boundary condition (B 5) give 

Solution of the above first-order differential equation gives (Murphy 1960, p. 13) 

where A ,  is a constant and is chosen to satisfy (B 7) .  The boundary condition (38) 
at 7 = 1 and the initial condition (39) have not been used so far. The constants 
d, in (B 10) are chosen to satisfy (39). On the other hand, provided thatf,(q) is 
to be determined such that the boundary condition at  7 = 1 is satisfied, it can be 
easily seen that the boundary condition at 7 = 1 is automatically satisfied by 
the rest of the complete solution for Cl. 

The analysis for the solution for C, is performed here with the purpose of 
predicting the longitudinal dispersion coefficient. As can be seen, one only needs 
to determine $. Even the constant A, is not needed for this purpose because it 
drops out of the expression for the dispersion coefficient [see (43) and (44)] when 
q5 is inserted. 
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